手机浏览器扫描二维码访问
对于bertrand假设,他准备使用反证法。
这是除了直接推导证明法之外最常用的证明方法,面对许多猜想时非常重要。
尤其是……在证明某个猜想不成立时!
但程诺现在当时不是要寻找反例,证明bertrand假设不成立。
切尔雪夫已然证明这一假设的成立,使用反证法,无非是将证明步骤进行简化。
程诺自信满满。
第一步,用反证法,假设命题不成立,即存在某个n≥2,在n与2n之间没有素数。
第二步,将(2n)!(n!n!)的分解(2n)!(n!n!)=Πps(p)(s(p)为质因子p的幂次。
第三步,由推论5知p≈ap;ap;ap;lt;2n,由反证法假设知p≤n,再由推论3知p≤2n3,因此(2n)!(n!n!)=Πp≤2n3ps(p)。
………………
第七步,利用推论8可得:(2n)!(n!n!)≤Πp≤√2nps(p)·Π√2n≈ap;ap;ap;lt;p≤2n3p≤Πp≤√2nps(p)·Πp≤2n3p!
思路畅通,程诺一路写下来,不见任何阻力,一个小时左右便完成一半多的证明步骤。
连程诺本人,都惊讶了好一阵。
原来我现在,不知不觉间已经这么厉害了啊!!!
程诺叉腰得意一会儿。
随后,便是低头继续苦逼的列着证明公式。
第八步,由于乘积中的第一组的被乘因子数目为√2n以内的素数数目,即不多于√2n2-1(因偶数及1不是素数)……由此得到:(2n)!(n!n!)≈ap;ap;ap;lt;(2n)√2n2-1·42n3。
第九步,(2n)!(n!n!)是(1+1)2n展开式中最大的一项,而该展开式共有2n项(我们将首末两项1合并为2),因此(2n)!(n!n!)≥22n2n=4n2n。两端取对数并进一步化简可得:√2nln4≈ap;ap;ap;lt;3ln(2n)。
下面,就是最后一步。
由于幂函数√2n随n的增长速度远快于对数函数ln(2n),因此上式对于足够大的n显然不可能成立。
至此,可说明,bertrand假设成立。
论文的草稿部分,算是正式完工。
而且完工的时间,比程诺预想的要早了整整一半时间。
这样的话,还能趁热的将毕业论文的文档版给搞出来。
搞!搞!搞!
啪啪啪~~
程诺手指敲击着键盘,四个多小时后,毕业论文正式完稿。
程诺又随手做了一份ppt,毕业答辩时会用到。
至于答辩的腹稿,程诺并没有准备这个东西。
反正到时候兵来将挡,水来土掩就是。
要是以哥的水平,连一个毕业答辩都过不了,那还不如直接找块豆腐撞死算了。
哦,对了,还有一件事。
程诺一拍脑袋,仿佛记起了什么。
在网上搜索一阵,程诺将论文转换为英文的pdf格式,打包投给了位于德古国的一家学术期刊:《数学通讯符号》。
sci期刊之一,位列一区。
影响因子521,即便在一区的诸多著名学术杂志中,都属于中等偏上的水平。
……………………
ps:《爱情公寓》,哎~~
快穿之宿主她总翻车 美漫之阿斯加德的战神 洪荒二郎传 盛唐风月 谁还没个后台 漫威世界的御主 我有一座英雄联盟学院 人在木叶,慌得一批 神话:在青蛇中修炼遮天法 天生就会跑 我!万古最强天骄 魔鬼的惩罚 他的小祖宗爱吃糖 史上第一帅神 海贼:无限极品抽奖 王者立海大 不朽神王 我公子扶苏,请始皇退位! 超神术士 身为学长的我被六傲娇少女捉弄
第四次忍界战争尾声,看着倒地的众人,旗木新雨开口说道你们可能不知道只用一剑就斩断神树是什么概念,我们一般只会用两个字来形容这种人剑豪!这是一个能通过系统学习到其他次元剑术的人,在火影世界的故事如果您喜欢从木叶开始的大剑豪,别忘记分享给朋友...
感谢联盟归还精灵世界安静祥和,因为我这个底层的训练家,跳反了。源自底层训练家培育家夏彦的自述如果您喜欢精灵世界的底层训练家,别忘记分享给朋友...
关于宠爱一生顾总的小娇妻有一只不会说甜言蜜语还性取向不明确的总裁怎么办?在线等挺急的!大家都说你是GAY安小念一身男装大大咧咧坐在顾霆腿上。你是男人那我就是GAY,你是女人那我便不是。顾霆目光灼灼的看着怀里的女人。网友好一招虐狗不见血...
关于大话水浒之武大郎传奇历史不是镜子,历史是精子,牺牲亿万,才有一个活到今天人生不是故事,人生是事故,摸爬滚打,才不辜负功名尘土。作为一名宅男,穿越,是我一直以来梦寐以求的事情,可穿越到武大...
关于权少的头号新欢你养我,好不好?第一次求他,她正值人生最绝望之际,放低了尊严,含泪相求。第二次求他,她给他跪下了。求求你,放过我们的孩子。因为,他逼她堕胎。共处了那么久,床上的温情脉脉,...
将球放在点球点上,看着郑龙站在球门前,C罗恨得直咬牙。这该死的混蛋!一定是打了兴奋剂!不然怎么可能将我们的射门全部挡在门外了!这不科学!梅西将头点的如同啄木鸟一样。对!小小罗你说的太对了。对方一定是打了兴奋剂。不然不科学!如果您喜欢坚守最后一道防线,别忘记分享给朋友...