手机浏览器扫描二维码访问
弦论必须是十维的理由十分复杂,
主要的想法大致如下:
维度愈大,弦可以振动的方式愈多。
但为了制造出宇宙中的所有可能性,
弦论不只需要大数目的可能振动模式,
而且这个数目还必须是特定的数,
结果这个数只有十维时空才办得到。
寻找钻石的时候,幸运的话,你可能附带找到其他的宝石。我在1977年发表的一篇两页论文里,宣告完成了卡拉比猜想的证明。详细的证明则发表在1978年的73页论文中,在这篇文章里,我附带证明了另外五个相关的定理。
总而言之,这些意外的收获,其实源自我思索卡拉比猜想时的非常境遇:我先是想证明他的猜想是错的,后来又掉头,试图证明它是对的。非常幸运,我所有努力都没有白费,每一着错步,每条看似不通的死路,后来都被我用上了。我号称的“反例”(从卡拉比猜想导出的结论,我想证明它们是错的),因为卡拉比猜想的成立,结果连带也是正确的。因此这些失败的反例,事实上是正确的典例,很快都成了数学定理,其中有些还颇为着名呢。
这些定理中最重要的一项,又带领我们推导出“赛佛利猜想”(Severiconjecture),这是庞加莱猜想的复数版本,数学家有二十多年无法证明其对或错。
其中对小于零的情形,其简单的推论就解决了长期悬而未决的Severi猜想,复二维投影空间的复结构是唯一的,甚至任意维数复投影空间的卡勒复结构也是唯一的。
另一个匪夷所思的推论是,在任意维数的这类复流形上,存在一个奇妙的陈示性数不等式,而此前代数几何学家却只能得到复二维的情形。
不过在进行这项证明之前,我得先证明一个关于复曲面拓扑分类的重要不等式。我之所以对这个不等式感兴趣,部分原因是听到哈佛大学数学家曼弗德(DavidMumford)的演讲,他当时正路过加州。这个问题是荷兰雷登大学的安东尼斯·凡德文(AntoniusvandeVen)首先提出的,讨论关于凯勒流形陈式类的不等式,凡德文证明:凯勒流形第二陈氏类的8倍,不小于其第一陈氏类的平方。当时许多人相信将不等式中的8换成3,将会得到更强的不等式,事实上,大家认为3是可能的最佳值。曼弗德问的,就是能不能证明这个更严格的不等式。
这个问题是1976年9月曼弗德在加州大学尔湾分校演讲时提出的,当时刚证明卡拉比猜想的我,正好听了这场演讲。他演讲到中途,我就相当确定曾经遇过相同的问题。在演讲之后的讨论中,我告诉曼弗德自己应该可以证明这个更困难的不等式。当天回家后,我检查做过的计算,果然不出所料,自己曾经在1973年试图用这个不等式来否证卡拉比猜想。而现在,我可以倒过来,用卡拉比—丘定理来证明这个不等式。事实上我的收获更丰盛,因为运用其中的特殊情况,也就是一个“等式”——即第二陈氏类的3倍“等于”第一陈氏类的平方——来证明了赛佛利猜想。
赛佛利猜想与这个应用范围更广的不等式[有些时候被称为“波格莫洛夫—宫冈—丘不等式”(Bogomolov-Miyaoka-Yauinequality),以表彰另两位数学家的贡献]是卡拉比证明最初的主要副产品,此后还有其他应用接踵而至。
事实上,卡拉比猜想涵盖的范围比我之前提到的更宽广,其中不只包含黎奇曲率为零的情况,也包括黎奇曲率为正常数与负常数的情形。
到目前为止,还没有人能证明出正常数条件中最普遍的情况。事实上,正常数的情形,卡拉比原先的猜想并不成立,后来我提出一个新猜想,加上某个容许正常数黎奇曲率度规存在的特殊条件。
过去二十年,许多数学家(包括多纳森)对这个猜想都有相当重要的贡献,但仍未能完全将它证明。虽然如此,我倒是证明了负曲率的情况,这是我整体论证的一环,法国数学家奥邦也独立证明了这个部分。
负曲率的解决,则证实了存在着一类涵盖更广的流形,称为凯勒—爱因斯坦流形(Khler-Einsteinmanifolds)。这门新建立的几何学,后来有出人意料的丰硕研究成果。
在思索卡拉比猜想的直接应用上,我可说是诸事顺遂,在短期间内解决了六七个问题。
事实上一旦你知道存在某个度规,就会顺势得到许多结果。
例如你可以反过来导出流形的拓扑性质,并不需要知道度规的确切表式。然后,又可以运用这些性质去指认出流形的唯一特色。
这就好像你不需要知道星系中众星体的细节,就能辨识星系;或者,不需要知道整副牌的细节,就能推理出许多手中牌张的性质(牌数、大小、花色等)。
对我来说,这就是数学的神奇之处,比起巨细靡遗的细节齐备之后才能做推论,这样反而更能彰显数学的威力。
见到我艰苦的努力终于获得回报,或者看着他人继续向我没想到的路径迈进,都让我觉得心满意足。但尽管拥有这些好运道,还是有个想法不时在心头扯咬着我。在我内心深处,我很确定这项研究除了数学之外,在物理学中也一定有其意义,虽然我并不知道究竟为何。就某个观点而言,这个信念其实十分显然,因为在卡拉比猜想中求解的微分方程(黎奇曲率为零的情况),基本上就是真空的爱因斯坦方程,对应到的是没有背景能量或宇宙常数为零的宇宙(目前,一般认为宇宙常数是正值,和推动宇宙扩张的暗能量同义)。而卡拉比—丘流形就是爱因斯坦方程的解,就像单位圆是x2+y2=1的解一样。
当然,描述卡拉比—丘空间比圆需要更多的方程式,而且方程式本身也复杂得多,但是基本想法是相同的。卡拉比—丘方程不但满足爱因斯坦方程,而且形式格外优雅,至少我觉得有令人忘形之美。所以我认为它在物理学中必定占据着某个重要位置,只是不知道究竟在哪儿。
喜欢数学心请大家收藏:()数学心
枭鸢 迷津蝴蝶 我在死亡副本当管理员 夸夸我的神探祖父穿越爹 末世后我成了疯批alpha们的安抚剂 穿到虫族和军雌相亲 杀了那个妖鬼 撩惹疯批顶E,笨蛋少爷他逃了 怪物崽崽和他的怪物监护人 兽世养山君[种田] 小仓鼠今天有猫了吗 攻略对象变成室友后,他不对劲 新搬来的邻居 死神不来了 第三十年明月夜 君为客 我真没想在过去的年代当学霸 神魔剑玄录 还是修仙吧 上流假象
简介彪悍兵王周天回归都市,美女纷纷暗送秋波!能力越大,责任越大,他不羁的外表之下,心底热血未冷,当昔日兄弟有难,组织召唤,他再次出征,一双铁拳,再战天下!如果您喜欢撩妹兵王在都市,别忘记分享给朋友...
关于夺来的美人,诈死也逃不掉宋萧萧那张明艳夺目的脸坏事的很,就连戴着面纱都不管用,躲了十几年,还是被新登基的五州君主给盯上。要知道她可是定亲了的。萧煜衡没用,照夺不误。...
陈浩南手持血饮狂刀,施展神功风神腿,从街头砍到巷尾,一战成名!青年督察刘杰辉,左手麒麟臂,右手排云掌,绰号不哭死神,专治极恶!超级警察陈家驹,拼死救助神秘小孩,得超凡力量,飞龙再生!神勇女警程小东,拜师逍遥老人,修习北冥神功,威震武林,风靡万千!不一样的港片,不一样的漫威,故事从力王开始如果您喜欢美漫从港片开始,别忘记分享给朋友...
关于路过你的倾城时光圣诞那晚听说妹妹把会所的少东家靳言惹毛了我二话不说拎把刀就冲了进去没想到这挺身而出的冲动,成为了我英勇献身的开始他是本色集团总裁的独子,人帅歌好舞也棒,要肌肉有肌肉,要长腿有长腿我是本色娱乐会所里默默无闻的小虾米,吧台是我阵地,水果刀是我武器天雷勾动地火,有时候只是一点就着的距离恶少恋上才女,是谁上辈子拯救了银河系?—靳言,你的出现...
警告番剧向的东西,请用正确姿式食用简介主角乃是一名习武有成者,无意间铸成一粒金丹的同时,意外穿越占据了一名RB学生的身体。随着他在那个国家越呆越久,认识了一些人,有了女朋友,也引了极大的混乱吐槽第五版的简介,想死的感觉,书名默默流泪感谢如果您能看这堆字,十分感谢,希望能让您满意,爱你,么么哒魔蝎小说...
关于等你,在满天星光下[本文双处双洁一对一]世事无常,变数太多。征服一个男人,不如热爱一份工作。做他人的朱砂痣或者白月光,不如做自己的女王。...